MiR-99a suppresses cell invasion and metastasis in nasopharyngeal carcinoma through targeting HOXA1
نویسندگان
چکیده
BACKGROUND Recent studies reported that miRNAs play important roles in the carcinogenesis and progression of nasopharyngeal carcinoma (NPC). Therefore, further studies are warranted to better elucidate the function and mechanism of miRNAs in NPC. METHODS Quantitative reverse transcription-polymerase chain reaction (RT-PCR) was used to detect the miR-99a expression in NPC cell lines and tissue samples. Wound healing, transwell migration and invasion, and lung metastatic colonization assays were performed to determine NPC cell migratory, invasive and metastatic abilities of NPC cells. Luciferase reporter assays, quantitative RT-PCR and Western blotting were used to validate the target of miR-99a. RESULTS We found that miR-99a was significantly downregulated in NPC cell lines and tissue samples. Ectopic overexpression of miR-99a significantly inhibited NPC cell migration and invasion in vitro, and suppressed lung macroscopic and microscopic metastatic colonization in vivo. Conversely, silencing of miR-99a significantly promoted the migratory and invasive abilities of NPC cells. Furthermore, HOXA1 was validated as a direct target of miR-99a, and ectopic expression of HOXA1 could rescue the suppressive effect of miR-99a overexpression on NPC cell migration and invasion. CONCLUSION Together, these results indicated that miR-99a could inhibit NPC invasion and metastasis by targeting HOXA1, thus providing a novel potential target for miRNA-based treatment for NPC patients in the future.
منابع مشابه
MiR-493 suppresses the proliferation and invasion of gastric cancer cells by targeting RhoC
Objective(s):MiRNAs have been proposed to be key regulators of tumorigenesis, progression and metastasis. However, their effect and prognostic value in gastric cancer is still poorly known. Materials and Methods: Gastric cancer cell lines were cultured. Tissue samples obtained from 36 gastric cancer patients were used for quantitative real-time PCR (qRT-PCR) analysis. The tissue microarrays (T...
متن کاملmicroRNA-29a functions as a tumor suppressor in nasopharyngeal carcinoma 5-8F cells through targeting VEGF
Objective(s): microRNA-29 (miR-29) family miRNAs have been mentioned as tumor suppressive genes in several human cancers. The purpose of this study was to investigate the function of miR-29a in nasopharyngeal carcinoma (NPC) cells. Materials and Methods: Human NPC cell line 5-8F was transfected with mimic, inhibitor or scrambled controls...
متن کاملmiR-100 Induces Epithelial-Mesenchymal Transition but Suppresses Tumorigenesis, Migration and Invasion
Whether epithelial-mesenchymal transition (EMT) is always linked to increased tumorigenicity is controversial. Through microRNA (miRNA) expression profiling of mammary epithelial cells overexpressing Twist, Snail or ZEB1, we identified miR-100 as a novel EMT inducer. Surprisingly, miR-100 inhibits the tumorigenicity, motility and invasiveness of mammary tumor cells, and is commonly downregulate...
متن کاملmiR-216b suppresses tumor growth and invasion by targeting KRAS in nasopharyngeal carcinoma.
MicroRNAs (miRNAs) are small noncoding RNAs that are involved in various diseases, including cancer. In the present study, we found that miR-216b was downregulated in nasopharyngeal carcinoma (NPC) cell lines and specimens. Decreased expression of miR-216b was directly related to advanced clinical stage and lymph node metastasis. miR-216b levels correlated inversely with levels of KRAS protein ...
متن کاملMiR-506 Suppresses Tumor Proliferation and Invasion by Targeting FOXQ1 in Nasopharyngeal Carcinoma
MiRNAs are small noncoding RNAs that play important roles in various biological processes including tumorigenesis. However, little is known about the expression and function of miR-506 in nasopharyngeal carcinoma (NPC). In this study, we showed that miR-506 was downregulated in nasopharyngeal carcinoma (NPC) cell lines and tissues. Ectopic expression of miR-506 dramatically suppressed cell prol...
متن کامل